Expression of MeCP2 in olfactory receptor neurons is developmentally regulated and occurs before synaptogenesis.

نویسندگان

  • Deborah R S Cohen
  • Valéry Matarazzo
  • Amy M Palmer
  • Yajun Tu
  • Ok-Hee Jeon
  • Jonathan Pevsner
  • Gabriele V Ronnett
چکیده

Rett syndrome, a neurodevelopmental disorder hypothesized to be due to defective neuronal maturation, is a result of mutations in the mecp2 gene encoding the transcriptional repressor methyl-CpG binding protein (MeCP2). We utilized the olfactory system, which displays postnatal neurogenesis, as a model to investigate MeCP2 expression during development and after injury. MeCP2 expression increased postnatally, localizing to mature olfactory receptor neurons (ORNs) and sustentacular supporting cells. The timing of MeCP2 expression was defined by using detergent ablation (to remove the ORNs) and unilateral olfactory bulbectomy (to remove the ORN target), both of which increase neurogenesis. MeCP2 expression in the ORNs reached prelesioning levels as cells matured after ablation, whereas expression was not completely restored after bulbectomy, in which functional synaptogenesis cannot occur. Thus, MeCP2 expression correlates with the maturational state of ORNs, and precedes synaptogenesis. Identifying the time window of MeCP2 expression should help further clarify the biological defects in Rett syndrome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain.

The gene encoding methyl-CpG binding protein 2 (MeCP2) is mutated in the large majority of girls that have Rett Syndrome (RTT), an X-linked neurodevelopmental disorder. To better understand the developmental role of MeCP2, we studied the ontogeny of MeCP2 expression in rat brain using MeCP2 immunostaining and Western blots. MeCP2 positive neurons were present throughout the brain at all ages ex...

متن کامل

MeCP2 regulates activity-dependent transcriptional responses in olfactory sensory neurons.

During postnatal development, neuronal activity controls the remodeling of initially imprecise neuronal connections through the regulation of gene expression. MeCP2 binds to methylated DNA and modulates gene expression during neuronal development and MECP2 mutation causes the autistic disorder Rett syndrome. To investigate a role for MeCP2 in neuronal circuit refinement and to identify activity...

متن کامل

Developmental expression of reactivity to monoclonal antibodies generated against olfactory epithelia.

The developmental expression of immunocytochemical reactivity to 3 monoclonal antibodies (Mabs Neu 4, Neu 5, and Neu 9) that were generated against adult rat olfactory epithelium was examined in olfactory tissues of embryonic rats. Tissues examined included the nasal olfactory epithelium, nerve, and olfactory bulb, as well as vomeronasal epithelium and nerve. Reactivity patterns of these Mabs i...

متن کامل

Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons.

It is well known that Rett Syndrome, a severe postnatal childhood neurological disorder, is mostly caused by mutations in the MECP2 gene. However, how deficiencies in MeCP2 contribute to the neurological dysfunction of Rett Syndrome is not clear. We aimed to resolve the role of MeCP2 epigenetic regulation in postnatal brain development in an Mecp2-deficient mouse model. We found that, while Mec...

متن کامل

CB1R-Mediated Activation of Caspase-3 Causes Epigenetic and Neurobehavioral Abnormalities in Postnatal Ethanol-Exposed Mice

Alcohol exposure can affect brain development, leading to long-lasting behavioral problems, including cognitive impairment, which together is defined as fetal alcohol spectrum disorder (FASD). However, the fundamental mechanisms through which this occurs are largely unknown. In this study, we report that the exposure of postnatal day 7 (P7) mice to ethanol activates caspase-3 via cannabinoid re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular neurosciences

دوره 22 4  شماره 

صفحات  -

تاریخ انتشار 2003